Vui lòng bật JavaScript để tiếp tục sử dụng Website!

Sử dụng khai triển Abel để chứng minh bất đẳng thức

  1. Chia sẻ trang này

    Tác giả: LTTK CTV
    Đăng lúc: 1/12/17
    Trong những kì thi vào chuyên toán, những kì thi HSG thì bất đẳng thức là 1 phần rất khó và được rất nhiều thầy cô giáo cũng như học sinh quan tâm đến. Những năm gần đây thì các kì thi đều có xu hướng không ra những bài BĐT đối xứng nữa, mà thay vào đó là những BĐT với rất nhiều điều kiện cũng như thứ tự giữa các biến. Hôm nay mình xin phép được trình bày về 1 phương pháp giải các dạng BĐT này, đó là phép nhóm Abel.

    1. PHÉP NHÓM ABEL

    Cho 2 dãy số thực $a_{1},a_{2},...,a_{n}$ và $b_{1},b_{2},...,b_{n}$. Kí hiệu $S_{k}=b_{1}+b_{2}+...+b_{k}$. Khi đó ta có đẳng thức:

    $a_{1}b_{1}+a_{2}b_{2}+...+a_{n}b_{n}=(a_{1}-a_{2})S_{1}+(a_{2}-a_{3})S_{2}+...+(a_{n-1}-a_{n})S_{n-1}+a_{n}S_{n}$

    2 trường hợp mà chúng ta hay dùng nhất là:

    • $a_{1}b_{1}+a_{2}b_{2}=(a_{1}-a_{2})b_{1}+a_{2}(b_{1}+b_{2})$
    • $a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}=(a_{1}-a_{2})b_{1}+(a_{2}-a_{3})(b_{1}+b_{2})+a_{3}(b_{1}+b_{2}+b_{3})$

    2. CÁC BÀI TOÁN
    Bài toán 1:Với $\alpha \geq \beta \geq \gamma > 0$; $a\geq \alpha , ab\geq \alpha \beta , abc\geq \alpha \beta \gamma$. Chứng minh rằng:
    $a+b+c\geq \alpha +\beta +\gamma$

    Giải

    Sử dụng phép nhóm Abel ta có:
    $a+b+c=\gamma (\frac{a}{\alpha }+\frac{b}{\beta }+\frac{c}{\gamma })+(\beta -\gamma )\left ( \frac{a}{\alpha }+\frac{b}{\beta } \right )+\left ( \alpha -\beta \right )\frac{a}{\alpha }\geq 3\gamma \sqrt[3]{\frac{abc}{\alpha \beta \gamma }}+2(\beta -\gamma )\sqrt{\frac{ab}{\alpha \beta }}+(\alpha -\beta )\frac{a}{\alpha }\geq 3\gamma +2(\beta -\gamma )+\left ( \alpha -\beta \right )=\alpha +\beta +\gamma$
    (đpcm)

    Bài toán 2: Với $0< a\leq b\leq c, bc\leq 6, abc\leq 6$. Chứng minh rằng:

    $a+b+c\leq 6$

    Giải

    Ta có:
    $6=1+2+3=a(\frac{1}{a}+\frac{2}{b}+\frac{3}{c})+(b-a)(\frac{2}{b}+\frac{3}{c})+(c-b)\frac{3}{c}\Rightarrow 6\geq 3a\sqrt[3]{\frac{6}{abc}}+2(b-a)\sqrt{\frac{6}{bc}}+(c-b)\frac{3}{c}\geq a+b+c$
    (đpcm)

    Từ những ví dụ trên, ta có thể rút ra phương pháp giải cho những BĐT dạng này

    Bước 1: Xác định dấu đẳng thức xảy ra khi nào bằng cách chuyển các điều kiện đã cho thành đẳng thức

    Bước 2: Viết lại đẳng thức cần chứng minh dưới dạng đối xứng 2 vế

    Bước 3: Áp dụng phép nhóm Abel cho 1 vế của 1 BĐT theo điều kiện thứ tự


    Dưới đây là 1 số ví dụ minh họa:

    Bài toán 3:Với $a,b,c$ là các số thực thỏa mãn điều kiện $a\geq b\geq 1, a\leq 3, ab\leq 6, ab\leq 6c$. Chứng minh rằng:

    $a+b-c\leq 4$

    Giải

    Bằng cách chuyển tất cả những điều kiện đã cho thành đẳng thức, ta dự đoán dấu bằng sẽ xảy ra khi $a=3,b=2,c=1$. Do đó ta sẽ viết BĐT cần chứng minh dưới dạng:

    $a+b+1\leq 3+2+c$

    Áp dụng phép nhóm Abel, ta có $3+2+c=(\frac{3}{a}+\frac{2}{b}+\frac{c}{1})+(b-1)\left ( \frac{3}{a}+\frac{2}{b} \right )+\frac{3}{a}(a-b)\geq 3\sqrt[3]{\frac{6c}{ab}}+2(b-1)\sqrt{\frac{6}{ab}}+(a-b)=a+b+1$
    (đpcm)

    Bài toán 4: Với $a,b,c> 0, \frac{b}{2}+c\leq 2, \frac{a}{3}+\frac{b}{2}+c\leq 3, c\leq 1$, chứng minh rằng:

    $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{11}{6}$

    Giải

    Ta có $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{3}(\frac{3}{a}+\frac{2}{b}+\frac{1}{c})+\left ( \frac{1}{2}-\frac{1}{3} \right )\left ( \frac{2}{b}+\frac{1}{c} \right )+\left ( 1-\frac{1}{2} \right )\frac{1}{c}\geq \frac{1}{3}.\frac{9}{\frac{a}{3}+\frac{b}{2}+c}+(\frac{1}{2}-\frac{1}{3}).\frac{4}{\frac{b}{2}+c}+\left ( 1-\frac{1}{2} \right ).\frac{1}{c}\geq \frac{1}{3}.3+(\frac{1}{2}-\frac{1}{3}).2+\left ( 1-\frac{1}{2} \right )=\frac{11}{6}$
    (đpcm)

    Bài toán 5: Cho $0< x< y\leq z\leq 1$ và $3x+2y+z=4$. Tìm giá trị nhỏ nhất của biểu thức:

    $P=3x^2+2y^2+z^2$
    (Đề thi HSG toán lớp 9 thành phố HCM năm 2007)

    Giải
    Áp dụng phép nhóm Abel kết hợp với giả thiết, ta có:
    $P=z.z+2y.y+3x.x=z(z-y)+(z+2y)(y-x)+x(x+2y+3z)\leq (z-y)+(1+2)(y-x)+4x=z+2y+x=\frac{1}{3}(3z+2.3.y+3.x)= \frac{1}{3}\left [ z(3-3)+(z+2y)(3-1)+z+2y+3x \right ]=\frac{1}{3}\left [ 2(z+2y)+x+2y+3z \right ]\leq \frac{10}{3}$
    (đpcm)

    Bài toán 6:Với $a,b$ là các số thực dương thỏa mãn $a\leq b\leq 3,a+b\leq 5$, tìm GTLN của biểu thức:

    $P=a^2(a+1)+b^2(b+1)$
    (Đề thi thử Toán chung trường THPT chuyên KHTN năm 2012)

    Giải
    Ta sẽ chứng minh $P=a^2+a^3+b^2+b^3\leq 2^2+2^3+3^2+3^3\Leftrightarrow (3^3-b^3)+(3^3-b^2)+(2^3-a^3)+(2^2-b^2)\geq 0\Leftrightarrow (3-b)(b^2+3b+9)+(2-a)(a^2+2a+4)+(3-b)(3+b)+(2-a)(2+a)\geq 0\Leftrightarrow (3-b)\left [ (b^2+3b+9)-(a^2+2a+4) \right ]+(3-b)\left [ (3+b)-(2+a) \right ]+\left [ 5-(a+b) \right ](a^2+2a+4)+\left [ 5-(a+b) \right ](a+2)\geq 0$ (đúng)

    Bài toán 7:Cho $x,y,z$ là các số thực dương thỏa mãn $x+y+z=9$, $x\geq 5, x+y\geq 8$. Chứng minh rằng:
    $xyz\leq 15$
    (Đề thi HSG lớp 12 tỉnh Hải Dương năm 2008-2009)

    Giải

    Phản chứng, giả sử $xyz> 15$. Ta có $z=9-x-y\leq 1\Rightarrow xy> \frac{15}{z}\geq 15$

    Áp dụng phép nhóm Abel và BĐT AM-GM, ta có:
    $x+y+z=\frac{x}{5}.5+\frac{y}{3}.3+z.1=2\frac{x}{5}+2(\frac{x}{5}+\frac{y}{3})+(\frac{x}{5}+\frac{y}{3}+z)\geq 2.\frac{x}{5}+4\sqrt{\frac{xy}{15}}+3\sqrt[3]{\frac{xyz}{15}}> 2+4+3=9$
    Điều này mâu thuẫn với giả thiết.
    Vậy $xyz\leq 15$


    Bài toán 8:Giả sử $a,b,c$ là các số thực dương thỏa mãn $a\leq b\leq 3\leq c$, $c\geq b+1, a+b\geq c$. Tìm giá trị nhỏ nhất của biểu thức:
    $$P=\frac{2ab+a+b+c(ab-1)}{(a+1)(b+1)(c+1)}$$

    (Đề thi tuyển sinh vào trường THPT chuyên KHTN năm 2012)

    Giải
    Trước tiên ta sẽ thu gọn biểu thức đang rất cồng kềnh.

    $P=\frac{1}{1+c}+\frac{ab+abc-c-1}{(a+1)(b+1)(c+1)}=\frac{1}{1+c}+\left [ \frac{ab-1}{(1+a)(1+b)}+1 \right ]-1=\frac{1}{1+c}-1+\frac{a}{1+a}+\frac{b}{1+b}=\frac{a}{1+a}+\frac{b}{1+b}-\frac{c}{1+c}$

    Ta dự đoán đẳng thức xảy ra khi $a=1,b=2,c=3$, khi đó $P=\frac{5}{12}$, nên ta sẽ chứng minh $P\geq \frac{5}{12}$

    Thật vậy, ta có $P\geq \frac{5}{12}\Leftrightarrow \left ( \frac{3}{4}-\frac{c}{1+c} \right )+\left ( \frac{b}{1+b}-\frac{2}{3} \right )+(\frac{a}{1+a}-\frac{1}{2})\geq 0\Leftrightarrow \frac{3-c}{4(1+c)}+\frac{b-2}{3(b+1)}+\frac{a-1}{2(a+1)}\geq 0$

    Áp dụng phép nhóm Abel, ta có BĐT tương đương với:
    $(3-c)(\frac{1}{4(c+1)}-\frac{1}{3(b+1)})+\left [ (3-c)+(b-2) \right ]\left [ \frac{1}{3(b+1)}-\frac{1}{2(a+1)} \right ]+\left [ (3-c)+(b-2)+(a+1) \right ]\frac{1}{2(a+1)}\geq 0$
    $\Leftrightarrow \frac{(3-c)(3b-4c+1)}{12(b+1)(c+1)}+\frac{(b+1-c)(2a-3b-1)}{6(a+1)(b+1)}+\frac{a+b-c}{2(a+1)} \geq 0$.
    Bài toán đã được chứng minh.



    Sau đây là 1 số ví dụ để mọi người luyện tập:

    Bài toán 1: Với $a,b,c> 0$ thỏa mãn điều kiện $c\geq 2, a+\frac{b}{2}+\frac{3}{c}\geq 3;\frac{b}{2}+c\geq 2; \frac{3}{c}\geq 1$. Tìm GTLN của biểu thức:

    $P=c^2-a^2-b^2$
    Bài toán 2: Với $a\geq b\geq 1\geq c> 0$, $\frac{2}{b}+c\leq 2$, $\frac{3}{a}+\frac{2}{b}+c\leq 3$. Chứng minh rằng:
    $\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\leq \frac{1}{6}$
    Bài toán 3: Với $0< a\leq b\leq c$ là các só thực dương thỏa mãn các điều kiện $\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\geq 3, \frac{2}{b}+\frac{3}{c}\geq 2, \frac{3}{c}\geq 1$. Chứng minh rằng
    $a^3+b^3+c^3\leq 36$
    Bài toán 4: Với $a\geq 3, a+b\geq 5, a+b+c\geq 6$, chứng minh rằng
    $a^2+b^2+c^2\geq 14$

    Bài toán 5: (làm mạnh BĐT Chebyshev). Giả sử các số thực $a_{1},a_{2},...,a_{n},b_{1},b_{2},...,b_{n}$ thoả mãn điều kiện

    $a_{1}\geq \frac{a_{1}+a_{2}}{2}\geq ...\geq \frac{a_{1}+a_{2}+...+a_{n}}{n}$
    $b_{1}\geq \frac{b_{1}+b_{2}}{2}\geq ...\geq \frac{b_{1}+b_{2}+...+b_{n}}{n}$
    Chứng minh rằng:
    $n(a_{1}b_{1}+a_{2}b_{2}+...+a_{n}b_{n})\geq (a_{1}+a_{2}+...+a_{n})(b_{1}+b_{2}+...+b_{n})$