Vui lòng bật JavaScript để tiếp tục sử dụng Website!

Sách bài tập Toán 10 - Hình học 10 cơ bản - Chương II - Ôn tập chương II: Câu hỏi và bài tập

  1. Chia sẻ trang này

    Tác giả: LTTK CTV
    Đăng lúc: 3/10/18
    Bài 2.45 trang 103 Sách bài tập (SBT) Toán Hình học 10.
    Cho tam giác ABC thỏa mãn điều kiện \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|\). Vậy tam giác ABC là tam giác gì?
    Gợi ý làm bài
    (h.2.32)
    01.png
    Gọi M là trung điểm của cạnh BC ta có:
    \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} = \overrightarrow {AD} \)
    Mặt khác \(\overrightarrow {AB} - \overrightarrow {AC} = 2\overrightarrow {CB} \). Theo giả thiết ta có:
    \(\left| {2\overrightarrow {AM} } \right| = \left| {\overrightarrow {CB} } \right| = \left| {\overrightarrow {AD} } \right|\)
    Hay \(AM = {{BC} \over 2}\)
    Ta suy ra ABC là tam giác vuông tại A.

    Bài 2.46 trang 103 Sách bài tập (SBT) Toán Hình học 10.
    Ba điểm A, B, C phân biệt tạo nên vec tơ \(\overrightarrow {AB} + \overrightarrow {AC} \) vuông góc với vec tơ \(\overrightarrow {AB} + \overrightarrow {CA} \). Vậy tam giác ABC là tam giác gì?
    Gợi ý làm bài
    Theo giả thiết ta có:
    \(\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right).\left( {\overrightarrow {AB} + \overrightarrow {CA} } \right) = 0\)
    \(\eqalign{
    & \Leftrightarrow \left( {\overrightarrow {AB} + \overrightarrow {AC} } \right).\left( {\overrightarrow {AB} - \overrightarrow {AC} } \right) = 0 \cr
    & \Leftrightarrow {\overrightarrow {AB} ^2} - \overrightarrow {AC} {}^2 = 0 \cr} \)
    Ta suy ra ABC là tam giác có AB = AC (tam giác cân tại A)

    Bài 2.47 trang 103 Sách bài tập (SBT) Toán Hình học 10.
    Tính các cạnh còn lại của tam giác ABC trong mỗi trường hợp sau:
    a) \(a = 7,b = 10,\widehat C = {56^0}29'\)
    b) \(a = 2,c = 3,\widehat B = {123^0}17'\)
    c) \(b = 0,4,c = 12,\widehat A = {23^0}28'\)
    Gợi ý làm bài
    a) \(\eqalign{
    & {c^2} = {a^2} + {b^2} - 2ab\cos C \cr
    & = 49 + 100 - 140\cos {56^0}29' \cr} \)
    => \({c^2} \approx 71,7\) hay \(c \approx 8,47\)
    b) \(b \approx 4,43\)
    c) \(a \approx 11,63\)

    Bài 2.48 trang 104 Sách bài tập (SBT) Toán Hình học 10.
    Tam giác ABC có \(\widehat B = {60^0},\widehat C = {45^0},BC = a\). Tính độ dài hai cạnh AB và AC.
    Gợi ý làm bài
    Ta có: \(\widehat A = {180^0} - ({60^0} + {45^0}) = {75^0}\)
    Đặt AC = b, AB = a. Theo định lí sin:
    \({b \over {\sin {{60}^0}}} = {a \over {\sin {{75}^0}}} = {c \over {\sin {{45}^0}}}\).
    Ta suy ra
    \(AC = b = {{a\sqrt 3 } \over {2\sin {{75}^0}}} \approx {{a\sqrt 3 } \over {1,93}} \approx 0,897a\)
    \(AB = c = {{a\sqrt 2 } \over {2\sin {{75}^0}}} \approx {{a\sqrt 2 } \over {1,93}} \approx 0,732a\)

    Bài 2.49 trang 104 Sách bài tập (SBT) Toán Hình học 10.
    Tam giác ABC có \(\widehat A = {60^0},\,\,b = 20,\,\,c = 35\)
    a) Tính chiều cao \({h_a}\);
    b) Tính bán kính đường tròn ngoại tiếp tam giác;
    c) Tính bán kính đường tròn nội tiếp tam giác.
    Gợi ý làm bài
    Ta có:
    \(\eqalign{
    & {a^2} = {b^2} + {c^2} - 2bc\cos A \cr
    & = {20^2} + {35^2} - 20.35 = 925 \cr} \)
    Vậy \(a \approx 30,41\)
    a) Từ công thức \(S = {1 \over 2}a{h_a}\) ta có \({h_a} = {{2S} \over a} = {{bc\sin A} \over a}\)
    \(= > {h_a} \approx {{20.35.{{\sqrt 3 } \over 2}} \over {30,41}} \approx 19,93\)
    b) Từ công thức \({a \over {\sin A}} = 2R\) ta có \(R = {a \over {\sqrt 3 }} \approx {{30,41} \over {\sqrt 3 }} \approx 17,56\)
    c) Từ công thức \(S = pr\) với \(p = {1 \over 2}(a + b + c)\), ta có:
    \(r = {{2S} \over {a + b + c}} = {{bc\sin A} \over {a + b + c}} \approx 7,10\)

    Bài 2.50 trang 104 Sách bài tập (SBT) Toán Hình học 10.
    Cho tam giác ABC có BC = a, CA = b, AB = c. Chứng minh rằng
    \({b^2} - {c^2} = a(b\cos C - c\cos B)\)
    Gợi ý làm bài
    Ta có: \({b^2} = {a^2} + {c^2} - 2ac\cos B\)
    \({c^2} = {a^2} + {b^2} - 2ab\cos C\)
    \( = > {b^2} - {c^2} = {c^2} - {b^2} + 2a(b\cos C - c\cos B)\)
    \( = > 2({b^2} - {c^2}) = 2a(b\cos C - c\cos B)\)
    Hay \({b^2} - {c^2} = a(b\cos C - c\cos B)\)

    Bài 2.51 trang 104 Sách bài tập (SBT) Toán Hình học 10.
    Tam giác ABC có BC = 12, CA = 13, trung tuyến AM = 8
    a) Tính diện tích tam giác ABC;
    b) Tính góc B.
    Gợi ý làm bài
    (h.2.33)
    02.png
    Theo công thức Hê – rông ta có:
    \({S_{AMC}} = \sqrt {{{27} \over 2}\left( {{{27} \over 2} - 13} \right)\left( {{{27} \over 2} - 6} \right)\left( {{{27} \over 2} - 8} \right)} \)
    \( = {{9\sqrt {55} } \over 4}\)
    \({S_{ABC}} = 2{S_{AMC}} = {{9\sqrt {55} } \over 2}\)
    Mặt khác ta có \(A{M^2} = {{{b^2} + {c^2}} \over 2} - {{{a^2}} \over 4}\) hay \(2A{M^2} = {b^2} + {c^2} - {{{a^2}} \over 2}\)
    Do đó
    \(\eqalign{
    & A{B^2} = {c^2} = 2A{M^2} - {b^2} + {{{a^2}} \over 2} \cr
    & = 2.64 - 169 + 72 = 31 \cr} \)
    \( = > c = \sqrt {31} \)
    \(\eqalign{
    & \cos B = {{{a^2} + {c^2} - {b^2}} \over {2ac}} = {{144 + 31 - 169} \over {24\sqrt {31} }} \cr
    & \approx 0,045 = > \widehat B \approx {87^0}25' \cr} \)

    Bài 2.52 trang 104 Sách bài tập (SBT) Toán Hình học 10.
    Giải tam giác ABC biết: a = 14, b = 18, c = 20
    Gợi ý làm bài
    Tam giác ABC có cạnh là BC = 14, CA = 18, AB = 20, ta cần tìm các góc \(\widehat A,\widehat B,\widehat C\)
    Ta có:
    \(\eqalign{
    & \cos A = {{{b^2} + {c^2} - {a^2}} \over {2bc}} \cr
    & = {{{{18}^2} + {{20}^2} - {{14}^2}} \over {2.18.20}} \approx 0,7333 \cr} \)
    \( = > \widehat A \approx {42^0}50'\)
    \(\eqalign{
    & \cos B = {{{a^2} + {c^2} - {b^2}} \over {2ac}} \cr
    & = {{{{14}^2} + {{20}^2} - {{18}^2}} \over {2.14.20}} \approx 0,4857 \cr
    & = > \widehat B \approx {60^0}56' \cr} \)
    \(\widehat C = {180^0} - (\widehat A + \widehat B) \approx {76^0}14'\)

    Bài 2.53 trang 104 Sách bài tập (SBT) Toán Hình học 10.
    Giải tam giác ABC biết: \(\widehat A = {60^0},\widehat B = {40^0};c = 14\)
    Gợi ý làm bài
    Tam giác ABC có cạnh c = AB = 14 và có \(\widehat A = {60^0},\widehat B = {40^0}\). Ta có: \(\widehat C = {180^0} - (\widehat A + \widehat B) = {80^0}\) cần tìm a và b. Theo định lí sin:
    \({a \over {\sin A}} = {b \over {\sin B}} = {c \over {\sin C}}\) ta suy ra \(a = {{c\sin A} \over {\sin C}} = {{7\sqrt 3 } \over {\sin {{80}^0}}} \approx 12,31\)
    \(b = {{c\sin B} \over {\sin C}} = {{14\sin {{40}^0}} \over {\sin {{80}^0}}} \approx 9,14\)

    Bài 2.54 trang 104 Sách bài tập (SBT) Toán Hình học 10.
    Cho tam giác ABC có \(a = 49,4,b = 26,4,\widehat C = {47^0}20'\). Tính \(\widehat A,\widehat B\) và cạnh C
    Gợi ý làm bài
    Theo định lí cô sin ta có:
    \(\eqalign{
    & {c^2} = {a^2} + {b^2} - 2ab\cos C \cr
    & = {(49,4)^2} + {(26,4)^2} - 2.49,4.26,4.\cos {47^0}20' \cr
    & \approx 1369,5781 \cr} \)
    Vậy \(c = \sqrt {1369,5781} \approx 37\)
    \(\eqalign{
    & \cos A = {{{b^2} + {c^2} - {a^2}} \over {2bc}} \cr
    & \approx {{{{(26,4)}^2} + {{(37)}^2} - {{(49,4)}^2}} \over {2.26,4.37}} \approx - 0,1916 \cr} \)
    Ta suy ra \(\widehat A \approx {101^0}3'\)
    \(\widehat B \approx {180^0} - ({101^0}3' + {47^0}20') = {31^0}37'\)